AUV是典型的复杂机电系统,其总体设计涉及外形、结构、能源、推进、布局、控制等多个学科。传统的串行设计需要对AUV的总体系统反复迭代,导致其研制周期长、成本高。而多学科优化设计(MOD)方法是通过充分探索和利用协同机制来处理子系统间的耦合关系,可以在短时间内获取系统最优方案,缩短设计周期,降低研发成本,目前在航天、航空、航海等领域已得到广泛应用。在利用MOD方法开展AUV的总体设计时,需要构建各子学科模型,梳理学科关系,预报系统性能,最终获得系统的全局最优解。具体的关键技术如下所示。
⑴ 参数化建模技术 在回转体AUV的总体设计中,各个学科模型都积累了大量的设计经验,实现了基于数学公式的多学科优化设计应用。但随着AUV任务需求的变化,出现了大量非回转体新概念AUV,如美国的Manta、英国的Tailsman、日本的URASHIMA等(图1),原有的经验公式已不再适用于新概念AUV。因此,亟需发展基于模型的AUV多学科优化设计方法,利用参数化建模技术实现几何模型的迭代更新和系统性能的快速响应。 图1 非回转体AUV 目前较为成熟的三维几何参数化方法可以分为2类:一类为定义法,即基于外形各部分的物理意义定义特征参数,实现几何建模;另一类为扰动法,具有代表性的为自由变形(FFD)方法,即通过对离散模型进行扰动来实现模型的变形。这2类方法均已应用于AUV的外形设计。图2所示为基于Bezier曲线的外形参数化和基于FFD的复杂外形参数化。图中:C1~C10为Bezier曲线的控制点;D1~D9为控制点的坐标差;图2(b)中红色的点为机体部分的FFD控制点;蓝色点为机翼部分的FFD控制点。 图2 三维几何参数化方法 随着AUV总体设计的不断深入,未来参数化建模技术趋于更加智能化的方向。例如,基于深度学习的参数化方法是利用卷积神经网络(CNN)、生成对抗网络(GAN)和深度神经网络(DNN)等架构,将复杂的几何模型转化到一个特殊的潜空间中,然后通过人工智能强大的学习能力来解析模型在潜空间中具有的低维流形特征,实现几何模型的局部定向控制,同时,还可通过数据库学习获取一种符合设计准则的最佳方案。 ⑵ 代理模型预测技术 系统性能预报是AUV总体设计的重要环节,决定着AUV总体设计的成效。随着计算机性能的提高,高精度仿真分析可以代替真实的试验来预报AUV的性能,但同时也会产生巨大的计算代价。采用代理模型预测技术,可以利用已有数据建立代理模型来近似高精度的仿真计算,能在满足计算精度的同时降低计算量。常用的代理模型包括径向基函数(RBF)模型、Kriging模型等。 在AUV单学科设计优化中,代理模型技术已得到广泛应用,如水动力外形设计优化、螺旋桨设计优化等。然而,AUV的总体优化属系统级的多学科优化问题,存在变量空间维度高、非线性强等特点,致使利用代理模型预测AUV的系统性能面临着挑战。 如何提高系统性能预报的精度是AUV总体设计需要发展的关键技术。针对AUV总体设计问题的高维、非线性特点,可以开展高维代理模f(x)型研究,即利用降维方法实现高维空间至低维空间的映射,降低高维建模难度,提升代理模型的高维表征能力。例如,现有的HDMR-RBF方法(图3)就是将高维目标函数展开为多个独立的子项,通过逐项构建RBF代理模型来实现高维问题的有效处理;高维Kriging方法利用主成分分析法减少超参数的个数,增强了Kriging的高维适用性。针对AUV总体设计中存在的多保真度信息,可以开展多保真度建模研究,以最大程度地挖掘样本数据信息,提高多保真度模型的精度及泛化能力。例如,分层Kriging方法通过对全局趋势模型引入低可信度分析的影响,实现了变可信度代理模型的构建。 图3 高维代理模型预测技术HDMR-RBF方法 ⑶ 数据驱动的多学科优化设计技术 国内外已经开展了基于经验公式快速预报系统性能的回转体AUV多学科优化设计工作。但随着AUV尺寸与约束的放开,其形态更加多样化,总体性能评估愈加困难,需要进行子学科之间的协同仿真,如外形计算流体力学(CFD)仿真、结构有限元法仿真等,带来了昂贵的计算代价。 针对该问题,通常的做法是构造静态代理模型以替代原仿真来开展多学科优化设计。但是由于代理模型不再更新,其预测精度非常依赖初始样本,故难以获得真实的最优解。同时,对于新概念AUV,其总体设计常具有变量空间维度高、变量类型不同(离散变量、连续变量)、目标或约束条件复杂等特点。如果直接对总体系统的目标或约束函数构造代理模型,其预测精度将会进一步下降。此外,在进行多学科协同仿真时,因各子学科的仿真模型不同,数据类型不一,目标或约束仿真耗时程度存在差异,导致系统性能评估存在并行资源浪费、信息交换与数据管理困难等问题。 因此,需要发展数据驱动的多学科优化设计技术,即利用已有样本数据构建面向复杂系统的代理模型,探索和挖掘有用信息,动态更新代理模型以提高预测精度,不断迭代优化获得系统最优解。同时,多学科优化设计需采用并行实施框架,以合理地开展计算资源分配,促进系统仿真的并行实施,科学管理仿真数据,从而缩短设计优化周期,加速总体设计进度。如图4所示,数据驱动的翼身融合了水下滑翔机多学科优化设计,通过建立多学科参数化模型,开展CFD、有限元分析(FEA)、动力学等仿真分析,实现给定样本输入Si=(x1(i),x2(i),...,xn(i))后,得到了对应的升阻比、结构强度等优化目标Yi=(y1(i),y2(i),...,ym(i))及操纵性、布局干涉等约束ci=(c1(i),c2(i),...,cn(i))的求解。经目标函数值、约束值重构后,不断进行优化迭代,实现了对多学科最优解的获取。 图4 数据驱动的多学科优化设计:以翼身融合水下滑翔机为例子 具体地,对优化目标、约束的求解可以由图17所示的技术路线进行,通过对所需性能指标ym按仿真耗时度划分计算资源,可实现不同耗时单元的统一协调,从而进一步提高系统仿真速度,实现优化迭代效率的进一步提升。图中:f*为最优目标函数值;X*为最优设计变量值;y^i为合成第i个仿真单元对应的预测目标函数值;f^(X)为预测目标函数值;g^i为合成第i个仿真单元对应的预测约束函数值;F为重构矩阵。 图5 耗时仿真系统优化流程示意图 2 AUV结构与材料设计技术 AUV结构是总体的一个重要组成部分,其功能是把AUV上的各系统组成一个有机的整体,为各系统提供安全、可靠的工作环境,为航行器内部各设备提供安装空间并承受外部环境载荷,以保证航行器的完整性和有效性,并满足总体性能要求。AUV的结构形式可以分为整体耐压结构、透水式框架结构、整体耐压舱和透水式框架复合结构。其中,透水式框架结构不承受静水压力,主要由外部蒙皮、内部框架、浮力材料等组成,其耐压壳体被包围在透水式框架内部。AUV的材料、结构设计及制造技术对于保障AUV的安全和可靠至关重要。AUV在水下工作时,其结构需要承受巨大的静水压力(与工作深度成正比),在静水压力载荷下,AUV的结构会发生变形,若结构不合理,可能会造成AUV结构发生稳定性失效(屈曲)、强度失效、或因变形过大导致的密封失效。AUV结构是其核心设备的保护体,一旦结构出现失效,出现舱室进水,将会导致其内部的电子仪器、电池、设备等短路失控,甚至是发生AUV沉底丢失的严重事故。因此,AUV的材料、结构设计及制造技术对于AUV安全可靠工作十分关键。随着当前AUV向大潜深、长航程和大负载方向发展,AUV结构的关键技术包括结构轻量化设计技术、结构多目标优化设计技术、新材料结构加工工艺技术等。 AUV耐压结构的设计首先是材料的选择。可用的AUV壳体材料包括高强度钢、铝合金、钛合金以及新型复合材料(如碳纤维复合材料、玻璃纤维复合材料、陶瓷基复合材料等)。如何在给定的工作深度下选择合适的轻质、高强、耐腐蚀材料设计出重量轻、承载力大、安全可靠性高的AUV壳体结构是当前的难点。图6示出了不同材料制成的AUV壳体结构极限工作深度与重浮比(AUV壳体重量与其排开水的重量之比)的关系曲线。从中可见,当工作深度大于1000m时,采用碳纤维复合材料制成的AUV的壳体结构具有最小的重浮比,但该材料的结构失效形式复杂,如何根据给定的尺度确定铺层角度、铺层顺序、铺层数、肋骨间距、肋骨截面、肋骨参数等,以使AUV壳体结构稳定性失效压力与各个方向强度失效压力的最小值最大是设计的难题。 图6 耐压壳体极限深度与重浮比关系 Zhang等针对碳纤维复合材料的AUV壳体进行研究,提出了复合材料壳体结构的稳定性失效和强度失效竞争机制,并采用多目标优化算法优化了加肋复合材料壳体,结果表明,相比铝合金和钛合金材料,在同等条件下使用碳纤维复合材料能够减重30%~45%,并已通过试验验证。陶瓷复合材料的密度虽然不是最小(3.2~3.4g/cm3),但由于其具有非常高的压缩模量和压缩强度,使得由其制成的AUV耐压壳体具有非常高的承压能力。从理论上讲,使用陶瓷复合材料制成的AUV其耐压结构具有更小的重浮比,但受目前工艺水平的限制,还无法用其制造出壁厚小于7mm的性能稳定、安全可靠的AUV耐压结构。因此,在AUV工作水深较小时,陶瓷基复合材料的优势并不明显,但在超深水(水深大于6000m)条件下,使用陶瓷基复合材料制备的AUV耐压壳体具有非常明显的优势。 图7 陶瓷复合材料与金属材料参数对比 2020年,西北工业大学联合中科院上海硅酸盐研究所解决了陶瓷基复合材料与钛合金连接环的连接问题,并研制出了可下潜至6000m水深的AUV陶瓷耐压壳体(图8),其直径为200mm,壁厚仅8mm,承压性能大于80MPa,并已通过试验验证。 图8 陶瓷耐压壳体 近年来,在AUV壳体结构形式方面,有研究人员提出了一些新概念的结构,对于AUV结构的轻量化和提高AUV的负载具有重要的指导意义。Rahimi等提出了“格栅+中空加肋”的结构形式(图9),该结构能显著减轻壳体结构重量并具有较好的承载能力。何衍儒和宋保维等针对翼身融合水下航行器提出了一种多泡耐压壳体结构形式,并对其进行了优化设计,如图10所示。 图9 中空矩形、梯形肋骨 图10 陶瓷耐压壳体 伍莉等和宋保维等针对大潜深AUV提出了藕节形耐压壳体的概念设计,如图11所示。图中:3个相互藕节的球壳半径分别为R1,R2和R3,壁厚均为t1;R4为与中间球壳连接处圆角半径;R5为贯穿中间球壳的圆柱壳体半径;l1为球壳1与球壳3球心之间的距离;l2为球壳1与球壳2球心之间的距离。 图11 多球藕节型耐压壳体 未来,在AUV结构方面,新型复合材料(碳纤维复合材料、玻璃纤维复合材料、陶瓷基复合材料)结构的设计和制造、新概念AUV的结构形式及应用将是AUV耐压结构材料的发展趋势。 3 AUV动力与推进技术 动力推进系统是AUV的“心脏”,通常由能源、电机/发动机、推进器等部件组成。当前,AUV的动力推进系统主要是以电动力为主,通过电池驱动电机来为AUV航行提供动力。为适应深远海的应用需求,AUV正朝着远航程、大潜深、低噪音的方向发展,因此,提升能量密度、克服海水背压、拓宽航速范围、改善航行噪音等成为AUV动力推进技术的发展方向。 ⑴ AUV能源供给与管控技术 目前,AUV的能源主要以锂电池为主,需要提升AUV锂电池的设计及管控技术。在电池本体设计方面,针对大潜深环境下的承压电池应用,因高静水压而导致其性能劣化的内在机理研究尚处于初期阶段,因而需采用多种先进的微观表征技术手段予以明晰。在电池成组设计方面,发展集承载−散热−供能于一体的动力舱段设计方法,对提升航行器的航程和安全具有重要意义。在电池组安全管控方面,通过电池组高精度状态监测与故障诊断、电路均衡与拓扑重构等技术来提高电池组的使用安全性与可靠性。 为提高AUV的续航能力,基于燃料电池−锂离子电池的混合能源技术是当前研究的热点。混合能源系统兼顾了燃料电池的高能量密度和锂离子电池的高放电功率,但因系统存在强非线性特性,需要建立完善的混合系统动态调控模型,从而提高混合动力控制技术的收敛性与鲁棒性。此外,水下无线充电技术是提高AUV续航能力的另一项新兴技术,AUV按需自主返回水下基站进行电能补充和数据交换,可以极大地拓展续航能力(图12)。目前,水下无线充电功率和效率已能够满足小型AUV的能源补给需求,未来,需重点解决海洋环境适应性、电磁兼容性等工程应用问题。 图12 西北工业大学研制的水下非接触式充电装置(回转体式和开架式) ⑵ 高比特性推进电机技术 AUV推进电机面临着空间密闭受限以及多速制机动的严苛使用环境,对功率密度和高效率范围有着较高的要求。在高功率密度推进电机技术方面,采用分数槽集中绕组或发卡式扁线绕组,通过结合磁路优化设计,可减小耗材,提高功率密度和材料利用率。为进一步提高水下推进电机的功率密度,需重点解决散热问题,喷油、甩油等油冷技术是较为先进的直接冷却技术,如图13所示。然而,考虑到AUV壳外即为海水,可开发更加简单、高效的间接冷却技术,如机壳水冷、海水冷却等,以满足电机高功率密度的散热需求。 图13 喷油冷却电机方案示意 在扩大推进电机高效率范围技术方面,采用优选极槽配比、优化电枢绕组、合理设计磁路结构等方法,可扩大电机高效率区间并向特定工作点移动,如图14所示,从而使水下推进电机在高、低功率状态下均具备较高的效率。 图14 大功率跨度推进电机效率优化效果对比 ⑶ 低噪声高机动推进器设计技术 推进器是实现AUV高效机动航行的重要部件,也是AUV自噪声的主要来源之一。为了提高AUV的机动性和噪声特性,国内外在新型推进方式和推进器优化两方面开展了大量工作,包括泵喷推进、滑翔推进和仿生推进等。泵喷推进是通过将泵喷推进的转子置于导管内,以延迟并减少空化的产生,改善推进器噪声性能,而无轴泵喷推进由于能够更加有效地降低空泡噪声和气蚀的影响,成为泵喷推进的重要研究方向。滑翔推进以水下滑翔机为代表,其工作原理是将水翼所产生的升力转化为推动其向前的动力,并由其内部调节装置来调整运动姿态,相比螺旋桨,滑翔推进的噪声得以大幅减小。仿生推进是使用传统的机械结构或者智能材料来模拟海洋生物的游动,通过协同推进、柔性推进来使其具备高机动、低噪声的优势,从而更好地完成探测任务。西北工业大学自主研发的仿蝠鲼潜水器由于其低噪隐蔽的特性,能够在海洋牧场中和鱼群混游,监视海洋牧场鱼群的健康状态。 AUV的动力与推进技术的发展需紧密结合平台的功能需求,低噪声和高机动性仍是其发展的长期趋势。同时,还应关注人工智能技术的应用,基于实时状态监测与智能管控手段,实现动力与推进系统的组部件协调、配合和智能化调度,这有利于提升AUV的整体静谧性和机动性水平。在能源技术方面,耐压电池、混合能源、无线充电等技术已得到初步发展,未来,需重点解决使用安全性和环境适应性的问题,基于环境能源的发电技术也是一个重要的发展方向。在电机技术方面,结合近年来在增材制造技术方面的突破,有望通过增材制造技术实现航行器动力推进舱段的一体化加工,从而进一步提升能量密度和功率密度。在推进器设计方面,仿生推进具有高机动、低噪声的优势,需重点突破仿生推进流动控制机理、高效推进控制、群游节能机制等关键技术。 4 AUV导航与定位技术 导航与定位系统是AUV的“眼睛”,可为AUV提供准确的位置、速度和姿态信息,是决定AUV是否到达预定地点、是否成功完成任务并返航的关键,同时,也是AUV开展水下探测、海域搜索、海底绘图、协同反潜等任务的基础。为适应深远海应用的需求,AUV导航与定位系统正朝着无人自主导航、长航时可靠工作、高精度定位、实时准确提供导航信息、小体积和低功耗等方面发展。 ⑴ 地球物理场导航技术 目前,通用的地球物理场导航技术主要包括地形匹配导航、地磁辅助导航和重力辅助导航3类。其中,地形匹配导航是指通过比较地形参考数据库和地形高度测量值来确定载体位置的特征匹配导航技术,是一种自主性强、连续性强、隐蔽性好的水下导航方法。海底地形辅助导航(STAN)技术主要用于水下导航定位,其利用水下地形传感器测得的水下地形数据,同水下地形数字海图数据库进行匹配,然后通过计算机处理数据而得出潜航器所在位置。该技术通常用于辅助惯性导航系统。 从理论上来说,该方法对AUV的航行时间和航行路径没有要求,可以保证AUV在水下长时间工作后仍能准确到达目标任务点进行作业任务,保证了定位的准确性。但是,这种导航技术会随着时间的积累而产生较大的累计误差。 海洋地磁辅助导航与地形匹配导航类似,也是采用预先获取高精度地磁数据库的方法。首先,地磁匹配预先将选定海域地磁场的某种特征值制成参考图并储存在水下航行器的计算机中,当航行器经过这些海域时,体载传感器实时测定地磁场的有关特征值以构成实时图,并实时输出位置信息;随后,将预先存储在水下航行器中的参考地磁图与实时图进行对比,得到当前位置的地磁参考值;最后,将实时图与预存的参考图在计算机中进行相关匹配,确定出实时图在参考图中的最相似点,也即匹配点,从而计算出航行器的精确实时位置,达到精确导航的目的。目前,我国对于地磁辅助导航的研究仍处于半实物仿真阶段,大部分是完成水下探测任务。例如,我国研制的“蛟龙”水下航行器的潜深为4500m,搭载有水下地磁探测器,可用于海底磁测分析。 重力辅助导航是一种利用重力敏感仪表的测量来实现的图形跟踪导航技术。它是把事先做好的重力分布图存储在导航系统中,然后再利用重力敏感仪器测定重力场的特性以搜索期望的路线,最后,通过人工神经网络和统计特性曲线识别法使运载体确认、跟踪或横过路线,从而到达某个目的点。重力辅助导航具有定位精度高、不受地域和时间限制、隐蔽性好等优势,但重力仪等传感器的质量和体积均较大,无法安装在水下航行器上。未来,可以考虑朝着轻量化、小型化的方向发展。 但是,地球物理场导航技术是以地球本身的物理特征进行导航的技术,需要提前收集采集地球的导航信息,并建立相应的导航信息库。而且,传统的地球物理场导航技术存在误差大、计算难度大等问题。现阶段,水下无人航行器普遍采用捷联惯性导航系统(sSINS)、捷联惯性导航系统/多普勒计程仪(SINS/DVL)自主组合导航,以及声学导航(即长基线(LBL)/短基线(SBL)/超短基线(USBL))等导航与定位技术。 ⑵ 组合导航技术 SINS是通过计算机模拟“数字平台”来代替实物完成工作,即将惯性测量组件(IMU)直接“捆绑”在载体上,通过陀螺仪与加速度计直接捕获载体的运动信息来实现水下导航与定位。SINS具有自主导航能力,不需要任何外界电磁信号就可以独立计算出载体的姿态、速度和位置信息,其抗外界干扰能力强,可以极大地提高水下航行器的性能和可靠性。并且,系统的初始对准快捷且方便。但是,SINS的定位误差会随着时间的延续不断增大,即误差积累、漂移增大。 SINS/DVL自主组合导航由捷联惯性测量组件(SIMU)可单独构成捷联惯性导航系统,利用SIMU中的姿态矩阵与水下航行器上的DVL构成航位推算系统,再利用这2个子导航系统一起组成组合导航系统,其结构框图如图15所示。DVL是用于测量水下航行器航行速度的仪器,其不能单独用于确定位置,但是可以从惯性导航系统中获得的方位信息进行航位推算,组成航位推算(DR)系统。SINS/DVL组合导航系统的高度定位误差是发散的,因此,有必要借助深度传感器的阻尼作用,提高系统高度通道的定位精度。 图15 SINS/DVL 组合导航系统原理图 声学导航解决了因电磁波在水下衰减很快而导致传播距离短、无法长期潜伏在水下作业的问题,其原理是:通过计算AUV与声标之间声波信号的传输时间以及其相位差,确定AUV与声标之间的相对位置,然后,通过坐标转换得到AUV在大地坐标系上的位置信息。声学导航大致可以分为3类:LBL,SBL和USBL,具体采用哪一类取决于基线的长度、基阵的数量和布置位置,如表1所示。 表1 水声定位系统分类 ⑶ 协同导航 单一的AUV往往不具备单独完成水下多任务的能力,而多个水下航行器的协同工作则可带来1+1>2的效果。在多AUV协同导航中,需要对每个AUV进行定位。作为导航领域最具研究前途的方向之一,协同导航在无线电网络、卫星导航、无人车、水下无人航行器等方面越来越受到人们的关注。将协同导航方法应用于AUV可以凸显水下导航的定位优势。一般来说,协同导航可以分为主从式和并行式2种。在主从式协同导航中,主AUV配备定位精度高的导航设备,从AUV则配定位精度相对较低的导航设备。在并行式协同导航中,各AUV搭配导航精度相同的设备,并行式中各AUV的导航精度一致。 目前,主要研究的还是主从式协同导航,在概念上需要领航AUV装备高精度的自主定位系统(如惯性导航系统),跟从的AUV装备低精度的定位系统,这样不仅可以降低AUV的制造成本,而且在执行任务时只需对领航AUV实现精准定位,然后通过水声测距和水声通信系统推算出其他同伴的位置信息与姿态信息即可。这与单一AUV导航相比,在节约成本及简化设备复杂度的前提下,还极大地提高了定位精度。 根据协调方式的不同,多AUV协同导航可以分为集中式、分布式和混合式3种。在集中式协同导航过程中,是先将从AUV的位置信息和主从AUV之间的距离信息传输到主AUV中,由主AUV进行滤波处理,然后再把解算后的位置信息广播到各AUV中。在分布式协同导航过程中,滤波中心分散在各自的导航算法中。在混合式协同导航过程中,滤波中心在各AUV上,采用这种方式能有效利用临近AUV的信息,是一种最优的结构形式。 图16 基于协调方式分类的导航方式图 5 AUV探测与通信技术 AUV具有造价低、隐蔽性强、值守区域广、机动灵活、无需人工干预等优势,可自主、长时游弋于水下。为了自主完成各类水下任务,对AUV智能化的要求越来越高,而AUV所携带的探测、通信载荷是其智能自主达成使命任务的关键设备。受AUV载荷空间重量的限制,探测通信系统的轻量化、一体化成为发展趋势,除此外,还需重点解决AUV平台运动带来的强多普勒、高背景噪声和由复杂海洋环境带来的信道时变等问题,特别是在无人集群应用场景下,如何克服平台和环境带来的影响,有效实现探测与通信也将面临巨大的挑战。 探测通信系统的轻量化一直是研究的热点和难点,近年来,主要突破点集中在实现电声、声电转换的换能器设备上。为了降低空间和重量,北约水下研究中心(NURC)、新加坡国立大学均致力于细线拖曳阵技术,后者自2005年起开始该技术的开发工作,已成功研制出直径为15~25mm、阵元数为12~24的多型细线拖曳阵,并利用STARFishAUV搭载直径为15mm的数字细线拖曳阵实现了自主探测,如图17所示。 图17 数字细线拖曳阵及AUV搭载探测实验 西北工业大学则利用直径为30mm的32元光纤细线阵实现了对中型水面舰20km范围的被动探测。相比标量声压水听器,矢量水听器具有与频率无关的偶极子指向性,可在各向同性噪声场中获得一定的空间增益,能够有效提升AUV在低信噪比环境下的目标探测能力,目前,已有多家研究机构在开展相关的研究工作。麻省理工大学、北约海事研究和实验中心(CMRE)、哈尔滨工程大学、海军潜艇学院等相关的国内外研究机构开展了利用矢量水听器对水下目标进行探测、定位与跟踪技术的研究和试验验证。其中,麻省理工大学利用AUV搭载100m长的矢量阵,开展了自主探测海上试验;海军潜艇学院通过在滑翔机头部搭载单矢量水听器,获得了对航速为10kn的试验船探测范围大于14km的探测指标。 为进一步克服空间、重量等的限制,AUV探测系统开始向主被动联合、换能器轻量化、与声通信机等其他声载荷共用换能器及信号处理硬件的方向发展,即研制通信、探测、节点子定位为一体的综合声载荷,可有效缩小设备体积,降低AUV的能耗水平。 由AUV自身运动所带来的强多普勒、高背景噪声,以及因复杂的水声传播信道引起的多径衰落等不利因素,使得AUV通信与探测系统迫切需要具有环境适应能力。为适应运动条件下的稳健通信需求,AUV通信多采用商用声通机,在调制方式上以抗多普勒、抗噪声性能较好的扩频(直扩、扫扩)和多进制数字频率调制(MFSK)为主,结合多普勒补偿技术,有助于实现较高相对运动速度及加速度下的稳健通信。结合公开报道,目前商用声通机的系统性能上界已接近于40km·kbit/s。相关高校及科研院所近年来开展的正交频分复用(OFDM)、正交时空频(OTFS)、单载波水声通信以及水下光通信、磁通信等研究与试验验证为不同环境下稳健、高速、可靠通信链路的实现提供了可行的思路。 为了应对水下复杂甚至是恶劣的使用环境,以及具有对抗能力的非合作目标带来的巨大挑战,近年来,受益于人工智能等信息技术的长足发展,AUV的探测、通信能力也得到了有力的支撑。结合深度学习技术,在长时间、固定区域或节点下获得有效的环境信息进而获得环境的适应性以提升探测、通信系统性能已成为可能。 需要指出的是,随着集群化、体系化的发展,各AUV如何在受限的通信链路条件下实现协同探测,也是当前AUV需要迫切解决的问题。采用动态多基地技术,可以在不同任务模式下,在多个AUV之间切换主被动工作体制,应对目标大范围机动、目标对抗等情况。 总之,智能化、轻便化、自主化是未来AUV探测与通信的发展方向,必将随着高灵敏度轻型传感材料、高增益信息处理和人工智能技术的发展,极大地提高现有水下航行器的自主能力。 总 结 AUV是经略海洋,实现“海洋进入、海洋探测、海洋利用”的核心装备之一,具有长航时、远航程、大深度、自主能力强、使命功能广等优势。随着AUV技术不断向成熟迈进,其任务执行范围也逐渐从浅海到深海,使命功能从辅助到中心,任务执行方式从单体到集群,逐步成为海上作战力量的重要组成部分。 多学科优化设计技术作为提升AUV性能的有效手段,在总体设计中发挥着重要作用。随着AUV形态特征与任务需求从单一到多样,总体系统的复杂程度也随之提高,要想在概念设计与详细设计阶段寻得最优方案,单纯地依赖经验将变得十分困难。未来,总体系统性能评估将依赖高精度的仿真模型,系统搭建也将融合各类型仿真求解工具,因此,开发适用于协同仿真环境的多学科优化设计技术,充分利用历史数据寻找最优设计区域是未来的发展趋势。 随着技术的不断发展,新型轻量化复合材料(碳纤维复合材料、玻璃纤维复合材料、陶瓷基复合材料等)在水下AUV结构中的占比将不断提高,应用也将更加广泛。此外,复合材料还具有良好的吸声、吸波特性,因此研究复合材料吸波−承载结构功能一体化技术将是未来AUV结构发展的趋势,将在AUV结构中占据越来越重要的地位,为形成结构重量轻、负载能力强、隐身性能好的AUV提供技术基础。 AUV动力与推进技术的发展应在紧密结合需求的基础上,融合先进的系统设计方法与新技术,实现提升动力与推进系统的综合性能。在动力与推进系统的设计新方法方面,应基于总体功能需求,针对功率电池、推进电机和推进器等组成部分,采用多系统、多学科耦合的优化设计思路,结合先进的多目标优化算法、机器学习等人工智能技术手段,实现动力推进系统的高紧凑性、高机动性和高效率化。在动力与推进系统的设计新技术方面,应从耐压电池、混合能源、无线充电等能源技术方面,从新型电机、新型材料、增材制造等电机技术方面,以及仿生推进、高效推进控制、群游节能机制等推进器技术方面,实现动力与推进系统的优化衍变。 导航定位对AUV任务的安全性和有效性来说至关重要。近年来,导航与定位(包括地球物理导航、组合导航、协同导航及即时定位与地图构建(SLAM)等)技术得到了显著提高,协同导航在未来AUV导航与定位领域将变得更加重要。对于AUV导航与定位领域的未来研究,一个关键的挑战是开发用于深远海作业的导航定位技术,未来,可结合自主对接技术与水下网络通信技术,实现AUV长期在深海区域的部署,解决AUV需定时浮出水面进行定位校准,以及能源补给困难等问题,实现AUV在深远海区域的长期、持续任务工作。 未来,在AUV探测通信方向上,应紧密结合应用背景和平台特点,重点突破强背景噪声下的信号处理、时变信道估计、载荷声兼容、探通一体化波形设计、基于AUV的多基地探测、稳健组网协议栈、非线性信号检测理论、低频线谱信号增强、异构多源信息融合等关键技术,提升AUV在高速运动条件下的通信速率和链路稳健性,增强AUV集群协同的主被动探测能力,构建可长期自持、大范围机动的水下自主无人观测、探测与作业集群。 高效能的水下无人集群是未来水下空间交战的重要力量,然而在一段时期内,技术的发展又离不开有人平台的控制,因此,未来无人装备与有人装备组成的混合编队将是水下作战的发展趋势。有人、无人协同作战可充分利用有人平台的信息处理、协同组织和决策能力,以及无人平台的隐身性、长航时、集群性等特点,来提升系统的协同区域探测与协同攻击能力;水下无人集群系统的感知探测、协同打击等能力的组合优化可进一步提升系统的生存能力。有人、无人集群作战在空中、水面和水中所形成的多维度立体式的作战网络,具有传统平台所不具备的隐蔽性、抗损伤性及可重构等功能,可以更好地完成对抗环境下的多维度水下空间作战任务。(文章摘自《中国舰船研究》)
声明: 本网站所发布文章,均来自于互联网,不代表本站观点,如有侵权,请联系删除。




能量密度:125-160Wh/kg
充放电能力:5-10C(20-80%DOD)
温度范围:-40℃—65℃
自耗电:≤3%/月
过充电、过放电、针刺、 挤压、短路、
撞击、高温、枪击时电池不燃烧、爆炸。
动力电池循环寿命不低于2000次,
80%容量保持率;
电池管理系统可靠、稳定、适应性 强,
符合国军标要求。