浩博电池网讯:德国已成为欧洲电池储能市场的主要力量,占据了约1/3的欧洲市场份额。根据德国电气与数字行业协会的数据,截至2023年,德国电池市场相比2019年增长了429%,市场总规模约232亿欧元。 目前,德国的电池装机功率达到11吉瓦,储能容量为16吉瓦时。根据德国输电公司的最新统计,目前申请入网的集中式电池总功率已飙升至160吉瓦,按照之前的电网扩建计划,市场中的集中式电池容量预计要到2045年前后才能接近50吉瓦。德国媒体将这一现象形容为一场令人震撼的“海啸”。 在电力系统中,集中式电池储能占据主导地位,主要用于调频和现货市场。随着电池价格的下降和电网需求的增加,新的商业模式不断涌现。其中,最引人注目的是“一池多用”的共享电池储能模式。该模式通过一个电池储能系统,可同时满足调频、现货市场和家庭储能等多种需求,提升了电池的利用效率和经济效益。这些共享系统在集中式电网储能中发挥了重要作用,并开始向家庭储能领域渗透。 本文将探讨德国电池储能的几大应用场景,包括家庭储能、现货市场、调频市场和电网调度,并分析这些场景下的商业模式特点。同时,将解析“一池多用”模式如何提升经济效益,以及电池应用对系统成本的影响,并展望其未来发展潜力。通过深入分析德国在经济层面的成功与失败经验,本文还将探讨为中国电池储能市场提供借鉴的可能性。 家庭电池储能 家庭电池储能市场已成为能源行业中的一股重要力量,最常见的商业模式是将光伏系统与电池储能相结合,电池用于提高自发电的自用比例,本质上是一种“削峰填谷”的家庭应用。 根据德国弗劳恩霍夫研究所的一项研究,在理想情况下,配备电池的家庭光伏系统成本可以与不带电池的系统相当,但在最差情况下,成本可能会翻倍。因此,从投资角度来看,尽管电池价格在持续下降,但这类系统并不总是最具经济效益。此外,如果没有65%的税收减免,家庭电池储能几乎无法实现盈利。 为提升家庭电池储能的盈利能力,一种新兴的商业模式——虚拟电厂应运而生。通过这一模式,家庭电池不仅可以满足自用需求,还能通过集合电量打包进入一次调频市场获取额外收入,实现盈利模式的多样化。不过,这种模式会限制自用比例,而且当前其规模仍较小。预测显示,到2045年,德国家庭电池的规模将达到上百吉瓦。然而,测控装置在总成本中的占比过高,系统的盈利能力显著降低。此外,研究表明,电池的充放电可能进一步增加配电网的投资成本。相比之下,其他家庭储能方式的盈利性更高,例如,通过市场化运营的家庭热泵可以将包括平衡在内的系统成本降低24%,而电动汽车充电的成本甚至可以降低70%以上。 为缓解电网拥堵和维护系统平衡,德国正计划实施更广泛的再调度措施。以往,再调度主要通过调整电厂的发电计划来解决电网堵塞问题,而现在,这些措施已经扩展到配电网层面,要求在新能源弃电的情况下依然保持系统平衡。未来,再调度措施将进一步覆盖家庭光伏、热泵和电池储能系统。推广可控的“智能电表”是关键,通过“一池多用”实现协同效应,降低测控装置在总成本中的占比。这不仅能优化家庭的电力自用,还可参与一次调频市场,甚至减少负电价现象的发生,并通过再调度获取多重收益。 总的来看,家庭电池储能不仅帮助用户参与现货市场交易、减少新能源预测误差,还能优化电力消费、降低用电成本。同时,电池储能系统不仅为家庭供电提供保障,还能通过向调频市场售电获得额外收益。通过“一池多用”的商业模式,有效降低控制装置在总成本中的占比,提升了投资回报率。然而,值得注意的是,在一次调频市场上,集中式电池由于能够大幅降低控制装置的相对成本,并且在容量规模上满足调频要求,相比家庭电池储能展现出更强的盈利能力。 一次调频电池储能 调频是通过调整电网频率来保持发电和用电的平衡。当频率波动时,一次调频像是应急反应,快速进行初步调整,防止频率变化过大;二次调频则更精细,进一步修正频率,确保系统长期平衡。由于一次调频的电价在所有电价中最高,因此,它成为集中式电池储能市场中最常见的商业模式(见图1)。 图1 一次调频的总费用 德国自2014年起允许电池参与调频市场。与2013~2015年的平均水平相比,调频成本下降了约64%(2021年和2022年因能源危机成本有所回升),这主要得益于集中式电池在调频中的广泛应用。 这种商业模式的成功有三个主要原因:一是集中式电池储能系统几乎免税,降低了成本;二是调频持续时间缩短,减少了惩罚风险;三是政策改革降低了市场门槛。 首先,由于几乎免税,成本降低了一半。其次,调频持续时间从半小时缩短到一刻钟,电池在充放电时几乎无需担心因未达标而受到惩罚。最后,2015年德国将调频市场的最低功率从10兆瓦降至1兆瓦,这一政策改革极大推动了市场发展。如今,调频市场上不仅有基于生物质发电的新能源运营商,还有不持有发电厂的交易公司,甚至还有通过聚合家庭电池储能提供服务的运营商。而在过去,调频服务主要由传统发电集团提供。 德国业界认为,持续盈利的关键在于市场容量是否充足,以及价格能否保持稳定。欧洲电网需预留3000兆瓦一次调频容量,以弥补两个发电机组同时故障时的功率损失。每天采购约1400兆瓦的一次调频功率,并对各国设定最低和最高采购量。这一机制旨在确保供应商在各国的分布相对均衡,以便在电网解列时,每个地区都能拥有足够的一次调频储备。 德国的一次调频需求为580兆瓦,其中至少167兆瓦必须从德国境内采购,其余部分可从邻国进口,前提是邻国的一次调频价格更低。如果德国供应商的报价足够有竞争力,他们还可以向邻国出口166兆瓦(出口上限),这意味着德国供应商最多可提供746兆瓦的一次调频。随着丹麦西部被纳入德国-卢森堡电力频率控制区块,德国的潜在出口能力有所提升。 图2 一次调频功率通过预认证的情况 从图2中可以看出,随着集中式电池进入市场,价格排序出清机制压低了整体价格,导致核电、硬煤电厂和生物质发电设施等高成本电源逐步退出一次调频市场。因此,抽水蓄能电站和集中式电池成为一次调频市场的主要力量。这一趋势与电力现货市场类似,但不同之处在于,抽水蓄能拥有近7吉瓦的容量,足以满足调频市场需求。因此,在新能源比例不断提高的情况下,价格不会像现货市场那样依赖燃气电厂出清定价而上升。 电池系统相对于抽水蓄能电站有两大优势。首先,抽水蓄能受限于水库和高度差等地理条件,而电池可以灵活部署在不同地区。其次,电池储能系统能够在亚秒级内快速、精准地响应功率需求,而抽水蓄能电站在发电与抽水模式之间的切换需要数秒至数分钟。尽管电池储能系统的初始成本较高且使用寿命较短,但从投资回报和总收益来看,电池储能仍具吸引力。一般而言,功率在2兆瓦以上的电池系统通常可以实现盈利。随着电池价格的持续下降,这一优势将进一步扩大。 2024年底,用于一次调频的集中式电池预认证容量超过德国的需求量(580兆瓦),不仅能够满足国内需求,还可覆盖允许的最大出口容量(166兆瓦)。然而,抽水蓄能在平均出清价格上仍然占有优势。 为了进一步扩大集中式电池在调频领域的市场容量,电池应用正逐步向二次调频领域拓展。 二次调频电池储能 德国二次调频的市场价格已接近一次调频,但电池容量仍然显得不足。此外,系统在整个服务周期内必须持续提供二次调频,并具备应对故障的备用能力。因此,电池系统通常需要更大的容量,才能独立完成二次调频任务。 为了增加市场份额,并确保全周期内的稳定调频,储能系统必须充分优化设计。一些方案试点尝试采用长时电池,如EWE能源公司采用了结合锂离子和钠硫电池的设计。另一些方案则将电池与燃气轮机结合,减少对电池容量的需求,同时确保提供4小时的调频服务。这类组合方案被认为比单独出售各类设备更具经济效益。 图3 二次调频功率通过预认证的情况 从图3可以看出,自2022年起,满足二次调频需求的集中式电池数量持续增长。二次调频市场中,电池储能系统的预认证容量从60兆瓦增至330兆瓦,增幅甚至超过了一次调频市场的增长。此外,硬煤电厂几乎已完全退出二次调频市场。 虚拟电厂通过信息技术将各类集中式和分布式发电设备(如传统电厂、太阳能、风能及家庭储能电池)整合为统一调度系统。自2009年起,德国市场开始引入虚拟电厂。例如,虚拟电厂能够调度数十座传统发电厂、数百个发电机组及上千个新能源发电设备,实现调频、自动发电优化和电力现货市场的平衡。通过集中管理发电厂的测量数据和控制指令,虚拟电厂建立发电机组的数学模型,并借助优化算法确定最优控制策略,实时将海量指令精准分配至各发电机组。自2016年起,电池在一次和二次调频中的应用得到进一步加强。电池储能系统凭借其快速响应的优势,不仅基本解决了发电计划中的阶梯误差问题,还弥补了抽水蓄能的不足。 图4 二次调频实际出力的年收入 二次调频的收入主要来自备用费用和实际出力费用,两者金额大致相当。相比于一次调频,电池在二次调频中的使用频率更高,因此,收益也更为可观。通过优化价格策略,电池还可以进一步提升调度收入。二次调频市场容量较大,日均交易量约为2吉瓦。然而,电池在二次调频中的参与度仍明显低于一次调频,这让业界感到困惑。原因可能在于技术实现的复杂性(见图4)。 然而,随着调频市场参与者的增加,价格下降的风险也逐渐显现。为了应对市场变化,电池运营商逐步将业务扩展至电力现货市场,以寻求更多的盈利机会。
声明: 本网站所发布文章,均来自于互联网,不代表本站观点,如有侵权,请联系删除。







能量密度:125-160Wh/kg
充放电能力:5-10C(20-80%DOD)
温度范围:-40℃—65℃
自耗电:≤3%/月
过充电、过放电、针刺、 挤压、短路、
撞击、高温、枪击时电池不燃烧、爆炸。
动力电池循环寿命不低于2000次,
80%容量保持率;
电池管理系统可靠、稳定、适应性 强,
符合国军标要求。